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Fractal spectrum of a quasi-periodically driven spin system 

Itdo Guamerit and Maria Di Mea 
Universita di Milano, sede di Como, via Lucini 3,221W Como, Italy 

Received 3 J a n w  1995 

Abstract. We perform a numerical spectral analysis of a quasi-periodically driven spin-; 
system, the spec" of which is singular continuons. We compute hd dimensions of spectral 
measures and discuss their connections with the time behaviour of various dynamical quantities, 
such as the moments of the distribution of the wavepacket. Our data suggest a close similarity 
between the information dimension of the sp&m and the. exponent ruling the algebraic gmwih 
of the 'entropic width' of wavepackets. 

1. Introduction 

The increasingly frequent appearance of sin,dar continuous (SC) spectrain various quantum 
mechanical situations has attracted attention to the dynamical implications of such spectra. 
For example, for an electron moving in an incommensurate or disordered structure, singular 
continuous spectra typically result in a sort of pseudodiffusive dynamics, which has a direct 
bearing on transport properties. If the spectrum is a multifractal, some of these properties 
depend on the value of certain fractal dimensions, according to quantitative rules, the precise 
assessment of which is an important theoretical task. 

sc spectra have also been found in some periodically or quasi-periodically driven model 
systems, which were introduced in order to investigate the possibility of chaotic behaviour 
in~quantum dynamics [2,3]. In particular, quasi-periodically driven spin systems have been 
studied, in view of their formal simplicity. Various spectral types have been identified, on 
varying levels of evidence, for different systems in this class [3]. From the mathematical 
viewpoint, some quasi-periodically driven spin systems belong formally to a class of abstract 
dynamical systems, which is well known in ergodic theory, and for which some of the SC 
spectra have been rigorously proven to occur [5 ] .  In a recent paper [4] a renormaliiation- 
group analysis has been implemented, strongly supporting sc spectra for a wider class of 
spin systems than encompassed by available exact results. The formal simplicity of this 
class of systems makes a numerical analysis of their dynamics particularly convenient, so 
that they appear very well suited for the study of the dynamical implications of fractal 
spectra. 

In this paper we describe a numerical spectral analysis for a particular model in this 
class, aimed at computing certain fractal dimensions, and at connecting them to asymptotic 
aspects of the dynamics. We use a technical approach, based on a discrete-time variant 
of Floquet theory, which has not previously been implemented in this context, and which 
offers a two-fold advantage. In the first place, if combined with a suitable scheme of rational 
approximation for an incommensuration parameter, it allows for a reliable computation of the 
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spectral measures, at a relatively low computational cost. Second, the Floquet formulation 
allows for a meaningful analysis of the growth in time of the spread of wavepackets, which 
is a very efficient empirical marker for continuous spectra, and usually a more convenient 
one than the hitherto used decay of correlations. 

We then analyse a number of dynamical features, related to the growth of wavepackets. 
We find that the exponents of growth of the moments of the wavepacket are not directly 
related to the Hausdorff dimension of the spectrum, (which is 1, as shown by a simple 
rigorous argument). We also find that the exponent of growth of the 'entropic' spread of 
the wavepacket is close to the numerically computed information dimension of the spectral 
measure. Finally, we present a general bound for the growth of the information contents 
of a finite string of observations with the length of the suing, in terms of the information 
dimension of the spectrum. 

I Guamen' and M Di Me0 

2. The model 

Our model is a periodically kicked spin-4 system, with the kicking strength depending 
quasi-periodically on time. We consider a function k(p) from [O,%T] into the unitary, 
unimodular 2 x 2 matrices, given by 

where x is a periodic real-valued function, to be specified later, k is a parameter, and &, CZ 
are Pauli matrices. In [0, ZR] we consider the shift 5, : (o H rp +2R01(mod Zx), with 01 a 
fixed parameter. We define the dynamics of our model by first arbitrarily fixing a phase 'po, 

and then prescribing that spinors &t) = given at a (discrete) time t evolve at time 
t + l  into 

At fixed (oo, (Y and k the evolution of a given initial spinor is thus obtained by applying 
a sequence of unitary matrices, which can be either a periodic or a quasi-periodic one, 
depending on the arithmetic nature of the number 01: if the latter is a rational, (Y = p / q  
with p .  q mutually prime integers, the sequence is periodic with period q, otherwise it is 
quasi-periodic. We have chosen the function x as the periodicized characteristic function 
of an interval I in [O, 2x1 : x(p) = 1 if (o(mod2z) E I, x(p) = 0 otherwise. As we shall 
explain below, such a choice makes the numerical analysis very efficient. The sequence of 
unitary matrices defining the evolution is now uniquely defined by the symbolic trajectory 
of the chosen ( o ~  associated with the shift rc and with the partition of [O, 2x1 defined by I 
and its complement. Since this partition consists of two sets, the symbolic sequence can be 
written as a binary sequence. In particular, if the length of the interval I is taken 2x01 and 
01 , and 01 is the (inverse) golden ratio (475 )  - l)/Z, one obtains the Fibonacci sequence. 

3. Spectral measures 

There are two possible approaches to the spectral analysis of the system (2.1). The first 
consists in considering (2.1) as a classical dynamical system, the state of which is defined 
by a pair 4 and 5 where @ is an angle and is a normalized spinor; the onestep evolution 
of the system is given by 

(CO, $1 +-+ (w, .Q(o)$). (3.1) 
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The system thus defined belongs to a class of dynamical systems known as ‘skew- 
products’ [5 ] .  Spectral measures are defined from the Fourier transform of correlation 
functions; in particular, given an initial spinor $CO), the corresponding spectral measure d p  
is defined by 

R ( t )  = eU* dp(A) (3.2) 7 0 

where R(t)  is the correlation function 

where ( , ) is the scalar product in Cz. Spectral measures defined in this way will be termed 
‘dynamical‘ measures in the following. 

Another definition of spectral measure rests on a-generalization of Floqnet theory, which 
is obtained on imbedding the non-autonomous quantum dynamics (2.2) in an autonomous 
dynamics, defined in a larger Hilbert space. This is done as follows. We_consider the phase 
y, as a new dynamical variable, and thereby consider state vectors Y = *(9) in the Hilbert 
space ‘Ft = L*([O, 2x1) @I Cz. In this space we consider the discrete unitary group generated 

, I  

by the unitary Floquet operator E .  

( ~ $ ) ( y , )  = &&&). (3.4) 
If $(p) is regarded as a curve in the phase space of the dynamical system (3.1), then 
(3.4) specifies the evolution of this curve under the dynamics (3.1). Our second definition 
of a spectral measure is just the usual one for unitary operators, applied to the operator 
(3.4). Such spectral measures will be termed ‘Floquet measures’. The connection between 
dynamical and Floquet measures will be discussed separately for the incommensurate and 
the commensurate cases. For the time being, we shall point out a simple property of 
the spectrum of S, which is valid in both cases. On defining in ‘H the unitary operator 
tr$((o) = sq$(q) we find 

U t m  = e-2=iuS 

which implies that the spectrum of S is invariant under the shift ra: that is, if a point of 
the unit circle belongs in the spectrum of S, so does the whole orbit of that point under r,. 

It is worth remarking that the operator S can be interpreted as the Floquet operator for 
a linear kicked rotator endowed with spin; the Occurrence of sc spectra for a spinless linear 
kicked rotator has been discussed in [I]. 

4. The commensurate case 

In the commensurate case (Y = p / q ,  the model is a periodically driven one, and its dynamics 
can be understood, as usual, from a spectral analysis of the one-period evolution operator. 
The state vector at times multiple of the period, q is found from 

i h q )  = F(m)G(o) 

where 
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(the product being ordered from right to left) yields the evolution over one period. This 
operator does not depend on time; thus the dynamics, read at integer multiples of the period, 
is given by a discrete unitary goup, generated by a fixed unitary (4.1). Being a finite matrix, 
the latter obviously has a pure discrete spechum, consisting of two conjugate eigenvalues 
z1 = ea and z2 = z; = e-i'. The dynamics is therefore recurrent. 

I Guameri and M Di Me0 

From equations (3.4) and (4.1) we find 

( S m 4  = m d ( d  (4.2) 
that is, 54 is a fibred operator. Its fibres are precisely the 2 x 2 matrices ?(q), and its 
spectrum is the range of the functions zl(q) and zz(q) giving the eigenvalues of $(pp). It 
turns out that, when the size of the interval I is not a multiple of 2n/q ,  both functions 
have exactly two values in their range: otherwise, they have just one. This fact allows for 
a decisive simplification of the numerical analysis, and is proved in appendix A; it stems 
from the finiteness of the range of the function x. 

Therefore the spechum of Sq consists of a finite number 2M of eigenvalues Z N  = 
( N  = 1, .. . 2M) ,  in complex conjugate pairs, with M = 2 or M = 1. The spectrum 

of S is then a subset of the set of the 2Mq complex qth roots of the ZN, The corresponding 
eigenphases are 

AN 2 n j  
A ~ . N  = - i- - 4 4  

(4.3) 

The spectrum of S is discrete, i.e. the Floquet dynamics in the extended Hilbert space has 
the same spectral character as the proper dynamics. It should be noted that the fact that 
the dynamical measure and the Floquet one are of the same type is, in the commensurate 
case, a non-generic feature, connected with the choice of a finitely valued function x in 
(2.2). On choosing a non-constant analytic function x , an absolutely continuous spechum 
of S would be found instead, in contrast to the character of the dynamics, that would still 
be recurrent. 

5. The incommensurate case 

The spectral measure of a vector Y =$(p) with respect to the operator (3.4) is defined as 
the Fourier transform of the correlation: 

C(t) ={Y,SrY)H = j c ( & q ) .  S(q)S(r;'p) ... S( t , - 'pP,~(r~' - 'q) ) .  

In the incommensurate case, the well known ergodic property holds 

(5.1) 

for any summable function g, and for almost every (00. Then the integral over p in (5.1) 
can be computed as follows: 

Now we apply to both factors ie the- scalar product the unitary operator 
.?(q~)&t;'%). . . .?(r;'+'qo) and take @ = @(O). Then, on comparing the result with 
(3.3) we find that C(f) = R(t) except possibly for a set of zero measure of values of yo. 
Therefore, in the incommensurate case the dynamical spectral measure (3.3) coincides with 
the Floquet spectral measure. 
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In [4] a quite similar quasi-periodically kicked spin system was studied, which was 
reduced to a classical dynamical system for which singular continuity of the spectrum is a 
known mathematical result. It looks likely, on account of the closeness of our model to that 
one, that this result also holds in our case; our numerical results, presented below, yield 
strong evidence for this. 

Since in the incommensurate case the orbit of any point of the unit circle under the 
shift is dense in the circle, from the invariance of the spectrum under ca it follows that the 
spectrum (which is by definition a closed set) must coincide with the whole unit circle. 

6. Numerical results 

O& main focus is on the incommensurate case, with a given by the golden ratio. In most 
of our computations we have taken I as an interval of length 2xj3; in a few cases we 
have taken 27ror instead. Unless explicitly stated, we will make reference to the first choice. 
We have obtained two types of numerical data:  dynamical ones, obtained from directly 
simulating the Floquet dynamics, and spectral ones. We discuss the latter first. 

A direct computation of the spectral measure from the Fourier transform of the 
numerically computed correlation function (3.3) involves certain subtleties, well known in 
the spectral analysis of time series, connected with the necessity of appropriately weighting 
the tails of correlation functions [9]. A more convenient strategy for the present model is 
based on approximations of the golden ratio constructed via continued fraction expansion, 
which produces a well known sequence of rational approximants. For such approximants 
we carefully compute the spectral measures, as we explain in appendix B, and thus we 
obtain approximations of the true spectral measure, by means of the pure point measure 
(B.2). 

A similar strategy has been widely used in the numerical investigation of other 
incommensurate spectral problems, such as, for example, the Harper and the kicked-Harper 
model 121. It is worth remarking, however, that in those cases, unlike the present one, the 
commensurate approximations have an absolutely continuous band spectrum, that is usually 
taken as a covering of the limit spectrum. 

For the measures obtained we have performed a fractal analysis, aimed at the 
determination of the fractal dimensions D,; the Hausdorff dimension DE is 1 in the 
incommensurate case, because the spectrum in that case is the whole unit circle. In our 
computations we have used the definitions 

where the interval [O, Zlr] was partitioned into small intervals of size 8, the i th  of which 
receives a weight pi from the spectral measure. 

0, were~obtained by a linear fit of the numerators in (6.1) versus the denominators in 
a suitable range of 6. A typical result is shown in figure 1. In no case could the value 
DO obtained from the spectrum of generalized dimensions be distinguished fiom DH = 1. 
The correlation dimension DZ is known to rule the decay of integrated correlations 181: 

asymptotically for T -+ CO. We have used this exact result to adjust our numerical 
computation of the other dimensions; in fact, since the approximating measure is a pure- 
point one, the dimensions of the limit measure must be read off a suitable range of not too 
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-20 -IS -10 -5 0 5 10 15 
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Figure 1. 
approximaot of the golden ratio used in this computation was 1591f2584. 

Spec" of generalired fractal dimensions Dq, for k = 10.5. The rational 

log 6' 

Figure 2. A bilogarithmic plot of x@f Venus 8-l (equarion (6.1)). The slope of the Straight 
line is the exponent of the correlation decay (equation (6.2)). Here k = 105. 

small 6. Our appreciation of a reliable range for 6 was based on the comparison of the rhs 
of the 2nd equation of (6.1) wiih the exponent y of algebraic decay of correlation obtained 
frm a direct computation of the latter (figure 2). 

We have also computed a number of dynamical data, by a direct numerical simulation 
of the dynamics. In particular, we have analysed the growth in time of the momenta Z, of 
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the distribution of the Roquet wavefunction on the Fourier basis. I ,  are defined by 
+W 

M t )  = Idu pn(t) 
"=-W 

3.5 

(6.3) 

- 

Notice that moments of order a 
the wavefunction behave as n-' at large n, due to the discontinuity of x . 

1 diverge for t > 0, because the Fourier coefficients of 

Finally we have studied the growth in time of the average entropy S(t )  : 

3.0 

4 
~ 2.5 - 
0 
# 

2.0 

Examples of the dependence on time of the moments and of the entropy are given in 
figures 3 and 4. The moments increase according to a power law: I&) - constant x tu@@), 
and so does the 'entropic number of states': N ( t )  = exp(S(f) - constant x tu. In table 1 
we summarize the values of the exponents y .  p .  U and the values of the D1, 9 for several 
choices of the kicking strength k. 

- 

- 

- 

Table 1. Some hactal dimensions and dynamical exponents. The mi0 of the size of the interval 
I to 2ri was the golden ratio for the 1st row. F for the others. 

k Y D Z  U DI s@ B ( $ )  
1 0.47 0.49&0.01 0.736f0.001 0.7f0.11 0.G 0.91 
9 053 0.544&0.005 0.755+0.001 0.73r0.05 0.96 0.9 

16 0.54 0.549&0.004 0.76f0.002 '0.75+0.05 0.94 0.89 
110.2 0.564 0.565iO.OM 0.76f0.002 0.76*0.03 0.94 0.9 

1.51 ~ . -  , , , , _ ,  ,, 

1.0 
2 3 4 5 6 7 8 9  

log t 

Figure 3- Illustrating the growth of the moment I+.  fork = 4. 
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6.5 

6.0 

5.5 
3 x 

5.0 

4.5 

4.0 

3.5 

- 

. 

. 

- 

. 

.. ’ 

Figure 4. Illusoating the growth in time of the entropy fork = 10.5. The slope of the straight 
line is the computed infomtion dimension D I .  

The specified errors are those involved in linear fits of bilogarithmic plots used to 
compute fractal dimensions or gowth exponents; they do not include numerical errors in 
computing the data themselves, therefore they to some extent underestimate the real errors. 
Generally speaking, it is usually difficult to get precise estimates for the dynamical growth 
exponents associated with fractal spectra, partly because of finite-basis effects coming into 
play at large times, and much more because the curves of growth display a characteristic 
pattern of kinks. In cases in which such seemingly log-periodic structures were particularly 
evident, the growth exponent was obtained directly by drawing a straight line through a 
sequence of maxima. In such cases the fitting error, not specified in table 1, is of the order 
of the first missing digit. 

I .  Discussion 

Some general exact results are known about the long-time properties of the quantum 
dynamics in the presence of a SC spechum. First of all, integrated correlations like (6.2) 
must tend to zero, and momenta I, must diverge in the limit t + 00 in all cases when 
the spectrum is purely continuous; furthermore, if the spectral measure is a fractal one, 
with a correlation dimension 4, and information dimension D1, then (6.2) holds for the 
decay of correlations [8],  and /(or) 2 D1[6]. Data in table 1 are fully consistent with these 
exact estimates (as mentioned above, the estimate (6.2) was actually used to adjust our 
numerical method). In addition, more or less heuristic arguments relating more precisely 
the exponents ,¶(or) to multifractality have been attempted. One such argument [7] has led 
us to hypothesize that B(or) = DH. the Hausdorff dimension of the spectrum. Although 
consistent with numerical results from a number of models, this hypothesis has been called 
into question [lo], and also recent numerical investigations have provided evidence that 
,¶(or) is not in general a constant but covers a continuous range of scaling exponents (multi- 
scaling). Our present data are fully consistent with the latter picture, because the observed 
values of ,¶(or) differ from DE = 1 (which was theoretically established and numerically 
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confirmed) significantly more than the estimated numerical error. Somewhat smaller, but 
still significant, are the differences observed in the values of ,6(or) obtained for different 
values of 01. 

Two interesting facts emerging from table 1 are (i) the closeness of the values obtained 
for different values of k,  which seems to indicate that the fractal structure of the spectrum 
is essentially determined by the quasi-periodic structure of the symbolic strings alone, and 
(ii) the closeness of the value of the ‘entropic’ exponent CT to that of DI. Although the 
difference of the two values was comparable to the relatively large numerical error, the 
actual agreement may be much better, because much of the data used in estimating D1 
appear not to have fully converged to the proper asymptotic regime. These data are, in fact, 
compared to the dynamical entropic exponent in figure 5; the agreement ‘by eye’ is better 
there than implied by table 1. Whether this fact reflects a real connection between the two 
quantities is an interesting theoretical question, for which we have no answer for the time 
being. 

Finally we shall mention a dynamical property, that, although not directly related to 
the above numerical results, has been recently introduced in essentially the same context as 
discussed here, with the aim of analysing the possibly chaotic property of the evolution of 
the spin system., For a classical dynamical system in discrete time, with a compact phase 
space S2, the ‘informational complexity’ is introduced by considering a finite partition I7 
consisting of m subsets, and the associated symbolic dynamics. For any given integer time 
t ,  all the possible symbolic strings of length t define a partition n’ of €2. If a specific orbit 
of the system is chosen, then a probability can be attached to every class of this partition, 
defined as the frequency with which the given finite string appears in the infinite symbolic 
string of the given trajectory. The Shannon entropy H ( t )  can then be defined, as well as the 
corresponding number of histones N ( f )  = exp(H(t)). A chaotic behaviour is associated 
with an exponential growth of N ( t )  in time. 

4’5 7 

.._. 
3:O 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 

log 6’ 

Figure 5. A bilogarithmic plot of - r p ;  logpi vmus 6-1 (equation (6.1)). for the me  k = 1 
of table 1. The slope of the dashed line is the entropic exponent a, but the position of the line 
has been chosen arbitrarik. 
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In a recent paper [ 111 such an analysis has been implemented numerically for the case 
of a quasi-periodically driven spin system. In essence, R was taken as the compact variety 
of normalized spinors; a certain partition of R was constructed, and the growth of H(r )  
with time was analysed. A seemingly sub-exponential growth of N ( t )  was observed, of the 
type exp(ctY) with y c 1. 

Here we shall sketch a general argument, which establishes an upper bound for N ( t )  
in the presence of a fractal spectrum. At time f .  l7’ is a partition of a tu-dimensional 
space, where U is the dimension of R, therefore H ( t )  < tulogm. Now, all the strings 
$(.v + l), . . . $($ + f) of length f which are observed in the evolution do indeed span a 
vector space of dimension t ,  because of the pure continuity of the spectrum; however, their 
‘effective dimension’ can be much less. It can, in fact, be proven [12] that the  minimum^ 
dimension d< ( t )  of a subspace which contains all the strings of length t within a maximum 
error E asymptotically grows like tDI. This means thar apart from a small error of order 6, 
the entropy H ( r )  is the same as the one computed over - mNiD1 classes. This leads to the 
upper bound H ( t )  <constant x f D i .  

Generally speaking, a direct numerical analysis of N ( t )  seems difficult, because 
computing the frequency of strings long enough to reproduce the correct asymptotic regime 
requires an enormous computation time. In any case, for the special case of quasi- 
periodically driven spin systems, the above upper bound is but a very crude one: in fact 
a simple argument [13] indicates that the asymptotic growth of N ( t )  cannot be faster than 
algebraic. 
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Appendix A. 

The matrix ?(v) is uniquely associated with a binary string of q digits, which specifies the 
symbolic periodic trajectory of (0. Suppose that the strings corresponding to two matrices 
?(v) and ?((p’) differ from each other merely by a cyclic permutation of digits. Then the 
two matrices differ from each other by a cyclic permutation of the operators which enter 
as factors in the definition of the matrices themselves. The two matrices are then unitarily 
equivalent, and therefore have the same eigenvalues. We have thus reached the conclusion 
that the number of distinct values in the range of zl((p) (and of z~((o). as well) is equal to 
the number of non-equivalent symbolic strings of q digits, two strings being equivalent if 
they can be obtained from each other by a cyclic permutation. Thus in order to find this 
number we have to find the total number of symbolic strings of length q,  and to divide it by 
q ,  which is the number of strings in an equivalence class. Let us denote by CO and C1 (with 
C, = I) the two classes of the partition. Then the points (p which produce a given symbolic 
string i l ,  i z ,  . . .i, are those belonging to the set Ai,[ *... it = r;’(Ci,) n . . . n rLq(Ci,). The 
sets Ai,i2...iq define a partition of [ 0 , 2 ~ ] ,  and there are as many distinct symbolic strings 
of length q as are non-empty classes in this partition. It is easily seen that there are. either 
2q or q non-empty such classes, the latter case occurring if, and only if, I is a multiple 
of k / q ;  in fact, on repeatedly applying the shift T, to the interval I ,  we get q distinct 
intervals, whose endpoints make a set of 2q or q distinct points, depending on whether the 
length of I is a multiple of 2n fq ,  or not. The sets A;,; 2...jg are precisely the disjoint intervals 
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in which [O, 2 ~ 1  is divided by these 2q (resp. q )  points, and their number is therefore 2q 
(resp. q) .  The number of non-equivalent strings is thus exactly 2 (resp. 1). 

Appendix B. 

In a commensurate case with CY = p / q  we get, !?om the definition ( 5 2 ) :  

where pj,! is projection over the eigenspace of 2 comesponding to the eigenphase h j , ~ .  
The spectral measure in [ O , k ]  is pure point: 

In order to compute this measure we have to find the eigenpbases h j . ~  and the associated 
weights p j . ~  = IP~,NY I H .  The eigenphases are most easily computed, by diagonalizing the 
2 x 2 matrix (4.1), for two different values of (00 (e.g. the two extremes of the interval I), 
and then using (4.3) (we assume that q is not a multiple of 3, for in that case just one value 
of qo would be sufficient). Conceming the weights, denoting & = cj i j , ~ ,  we have from 
(B.1): 

2 

which is an exactly periodic function of the discrete time t with period q. so that the weights 
are quite easily and reliably computable via finite Fourier transform as soon as the Ihs of 
(B.3) is known. Since AN is computed as described above, we are left with the computation 
of the correlation of p"y at times t = 0, . . . q - 1. To this end we first find &Y as follows: 
having diagonalized the matrix (4.1) for all values of (p, in a suitably thick grid, we let 

P N $ ( % )  = (ZN(V)O)r $('?O))ZN(rPO) 

where Z N ( ( ~ O )  is defined~as follows: it is the eigenvector of (4.1) with eigenvalue AN. if 
the latter is an eigenvalue of (4.1) at the given (00, and it is the zero vector otherwise. The 
correlation of ~ N Y  is then found directly from the definitions (3.4) and (5.1). The only 
approximation involved in this computation is the discretization of the scalar product in 'FI, 
which involves an integral over 'p and is instead computed as a finite sum over the chosen 
finite grid used to discretize [0, 2 ~ 1  . 
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